**Auteur :** A. Borel

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :** 1979

Part 1 contains sections on Reductive groups, representations, Automorphic forms and representations)

**Auteur :** Armand Borel

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :** 1979-06-30

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions

**Auteur :** Dorian Goldfeld

**la langue :** en

**Éditeur:** Cambridge University Press

**Date de sortie :** 2011-04-21

This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.

**Auteur :** James W. Cogdell

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :**

James W. Cogdell, Lectures on $L$-functions, converse theorems, and functoriality for $GL_n$: Preface Modular forms and their $L$-functions Automorphic forms Automorphic representations Fourier expansions and multiplicity one theorems Eulerian integral representations Local $L$-functions: The non-Archimedean case The unramified calculation Local $L$-functions: The Archimedean case Global $L$-functions Converse theorems Functoriality Functoriality for the classical groups Functoriality for the classical groups, II Henry H. Kim, Automorphic $L$-functions: Introduction Chevalley groups and their properties Cuspidal representations $L$-groups and automorphic $L$-functions Induced representations Eisenstein series and constant terms $L$-functions in the constant terms Meromorphic continuation of $L$-functions Generic representations and their Whittaker models Local coefficients and non-constant terms Local Langlands correspondence Local $L$-functions and functional equations Normalization of intertwining operators Holomorphy and bounded in vertical strips Langlands functoriality conjecture Converse theorem of Cogdell and Piatetski-Shapiro Functoriality of the symmetric cube Functoriality of the symmetric fourth Bibliography M. Ram Murty, Applications of symmetric power $L$-functions: Preface The Sato-Tate conjecture Maass wave forms The Rankin-Selberg method Oscillations of Fourier coefficients of cusp forms Poincare series Kloosterman sums and Selberg's conjecture Refined estimates for Fourier coefficients of cusp forms Twisting and averaging of $L$-series The Kim-Sarnak theorem Introduction to Artin $L$-functions Zeros and poles of Artin $L$-functions The Langlands-Tunnell theorem Bibliography

**Auteur :** Stephen S. Gelbart

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :** 2009

This book is the second of two volumes, which represent leading themes of current research in automorphic forms and representation theory of reductive groups over local fields. Articles in this volume mainly represent global aspects of automorphic forms. Among the topics are the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions. The articles are written by leading researchers in the field, and bring the reader, advanced graduate students and researchers alike, to the frontline of the vigorous research in these deep, vital topics. The companion volume (""Contemporary Mathematics, Volume 488"") is devoted to global aspects of automorphic forms.

**Auteur :** Freydoon Shahidi

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :** 2010

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.